Estimation of Channel State Transition Probabilities Based on Markov Chains in Cognitive Radio

نویسندگان

  • Shibing Zhang
  • Huijian Wang
  • Xiaoge Zhang
چکیده

—Prediction of spectrum sensing and access is one of the keys in cognitive radio (CR). It is necessary to know the channel state transition probabilities to predict the spectrum. By the use of the model of partially observable Markov decision process (POMDP), this paper addressed the spectrum sensing and access in cognitive radio and proposed an estimation algorithm of channel state transition probabilities. In this algorithm, the historical statistics information of channel is used to estimate the channel state transition probabilities, and the Least Square (LS) criterion is used to minimize the fitting error. It is showed that the channel state transition process is a special Markov chain, in which the channel state has only one state within each slot. The relationship between estimation precision and the number of converging observation samples is derived. The more the historical statistics information is, the higher the estimation accuracy is. Simulation results showed the estimated error of the LS algorithm is smaller than the linear estimation algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes

Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded  DNA virus. There were two approaches for prediction of each Markov Model parameter,...

متن کامل

Empirical Bayes Estimation in Nonstationary Markov chains

Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical  Bayes estimators  for the transition probability  matrix of a finite nonstationary  Markov chain. The data are assumed to be of  a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...

متن کامل

On Myopic Sensing for Multi-Channel Opportunistic Access

We consider a multi-channel opportunistic communication system where the states of these channels evolve as independent and statistically identical Markov chains (the Gilbert-Elliot channel model). A user chooses one channel to sense and access in each slot and collects a reward determined by the state of the chosen channel. The objective is to design a sensing policy for channel selection to m...

متن کامل

On The Secrecy of the Cognitive Interference Channel with Channel State

In this paper the secrecy problem in the cognitive state-dependent interference channel is considered. In this scenario we have a primary and a cognitive transmitter-receiver pairs. The cognitive transmitter has the message of the primary sender as side information. In addition, the state of the channel is known at the cognitive encoder. Hence, the cognitive encoder uses this side information t...

متن کامل

Monetary Fundamental-Based Exchange Rate Model in Iran: Applying a MS-TVTP Approach

T he main purpose of this article is to analyze exchange rate behavior based on monetary fundamentals in the context of Iranian economy over the period 1990:2 to 2014:3. To do so, two monetary exchange rate models is investigated, the first by regarding interest rate differential as a monetary variable, and the second one regardless of interest rate differential as a monetary variabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCM

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014